The Influence of the Complexation of Sodium and Lithium Triflate[†] on the Selfassembly of Tubular-supramolecular Architectures Displaying a Columnar Mesophase Based on Taper-shaped Monoesters of Oligoethylene Oxide with 3,4,5-Tris[p-(n-dodecan-1-yloxy)benzyloxy]benzoic Acid and of their Polymethacrylates

Virgil Percec,^{*,#} James A. Heck,[#] Dimitris Tomazos[#] and Goran Ungar^b

^a Department of Macromolecular Science, Case Western Reserve University, Cleveland, OH 44106-2699, USA

^b Department of Engineering Materials and Centre for Molecular Materials, The University of Sheffield, Sheffield, UK S1 3DU

The monoesters of mono-(1a), di-(1b), tri-(1c) and tetra-(1d) ethylene glycol with 3,4,5-tris[p-(ndodecan-1-yloxy)benzyloxy]benzoic acid (1), the polymethacrylates derived from them (2) and the complexes of both 1 and 2 with LiCF₃SO₃ and NaCF₃SO₃ self-assemble into cylindrical supramolecular architectures which exhibit a hexagonal columnar (Φ_h) mesophase. The generation of the $\Phi_{\rm b}$ mesophase depends on the stabilization of this assembly by *endo*-recognition in the core of the cylinder (H-bonding and ionic interactions) and exo-recognition that occurs between the tapered groups and also between the cylinders (i.e., the hexagonal arrangement of the columns). The low molecular weight compounds 1 are able to complex more salt in the $\Phi_{\rm b}$ mesophase and have larger increases in Φ_h -isotropic transition temperature ($T_{\Phi h-i}$) per increase in salt concentration than the corresponding polymethylcrylates 2 derived from them. Molecular modelling appears to indicate that positional and conformational restrictions imposed by both the tapered side groups and the polymer backbone are responsible for these results. Both the polymers and the low molar mass compounds have their Toht shifted to lower temperatures and allow more LiCF3SO3 to be complexed with the increase in the number of oxyethylene segments present in the flexible spacer. A comparison of the difference in the effectiveness of the Li cation versus the Na cation in providing increased stabilization of the $\Phi_{\rm b}$ mesophase does not show any significant differences between the two cations.

Molecular-recognition-directed self-assembly of supramolecular architectures ¹ and self-synthesis ² are two of the most active areas of research in contemporary chemistry. Recently we became interested in the self-assembly of cylindrically shaped supramolecular architectures by using a combination of *exo*-and *endo*-recognition,^{3,4} or *exo*-recognition and a polymerization process.⁵ The principles of this research have been discussed in detail elsewhere.^{3,4,5b}

The monoesters of mono-(1a), di-(1b), tri-(1c) and tetra-(1d) ethylene glycol with 3,4,5-tris[p-(n-dodecan-1-yloxy)benzyloxy]benzoic acid (1), the polymethacrylates derived from them (2) (Fig. 1) and the complexes of both 1 and 2 with $LiCF_3SO_3$ self-assembly into cylindrical supramolecular architectures which exhibit a hexagonal columnar (Φ_h) mesophase. 1, 2 and the complexes of LiCF₃SO₄ have been previously characterized by a combination of differential scanning calorimetry (DSC), X-ray scattering experiments, density measurements, and thermal optical polarized microscopy.⁴ With the additional information provided by molecular modelling, a representative model of a self-assembled supramolecular cylinder with hydrophilic oligooxyethylene segments comprising the core of the cylinder and the hydrophobic aromatic and paraffinic groups being concentrated at the periphery region of the cylinder was proposed. A representation of this cylindrical assembly and of its complex with LiCF₃SO₃ is shown in Fig. 2. This self-assembly process is proposed to occur via a combination of microsegregation of the hydrophobic and hydrophilic segments of the molecules and regular packing of

Fig. 1 Structures of ω -hydroxyoligooxyethylene 3,4,5-tris[p-(n-do-decan-i-yloxy)benzyloxy]benzoates (1a-d), and of the polymethacrylates based on them (2)

the tapered groups into a cylindrical shape which resembles an inverse micelle. The generation of the Φ_h mesophase is

[†] Trifluoromethanesulfonate.

Table 1 Thermal transitions of the complexes of 1 and 2 with various amounts of LiCF₃SO₃ and NaCF₃SO₃ (Φ_h = hexagonal columnar mesophase; k_1, k_2, k_3 = crystalline phases; i = isotropic phase; c = crystallization occurs during heating; g = glassy phase). The data are from the first heating, second heating and first cooling DSC scans

Compd.	Salt added to 1 or 2		Thermal transition (°C) and corresponding enthalpy changes (in parentheses, kcal mol ⁻¹) ^a			
	Туре	Moles	1st heating scan	2nd heating scan	1st cooling scan	
1a	LiCF ₃ SO ₃	0.00	c 46 (-1.8) k_2 58 (4.9) k_1 71 (0.39) Φ_{k} 85 (0.73) j	$k_34.5(1.8) c 48(-1.1) k_2 56(2.1)$ k. 72(1.2) D . 84(0 70) j	i 76 (0.76) Φ _h 25 (4.2) k ₁	
1 a	LiCF ₃ SO ₃	0.03	k_1 53, 72 (13.2) ^b Φ_h 86 (0.86) i	$c 46 (-1.3) k_1 57 (4.9)$ $\Phi, 86 (0.71) i$	i 78 (0.73) $\Phi_{\rm h}$ 23 (3.9) k_1	
1a	LiCF ₃ SO ₃	0.06	k ₁ 50, 71 (13.4) ^b Φ _b 87 (0.70) i	k_1 52 (5.4) Φ_b 87 (0.74) i	i 79 (0.69) Ф. 17 (3.6) k.	
1a	LiCF ₃ SO ₃	0.09	k ₁ 50, 70 (13.9) ^b Φ _b 87 (0.58) i	k ₁ 51 (5.9) Φ, 88 (0.58) i	i 80 (0.69) Φ,15 (3.6) k,	
1 a	LiCF ₃ SO ₃	0.12	$k_1 54, 72(13.2)^b \Phi_b 89(0.57) i$	\mathbf{k}_{1} 52 (5.2) Φ_{1} 90 (0.58) i	$i 79 (0.55) \Phi_{\rm s} 12 (3.1) k_{\rm s}$	
1a	LiCF ₃ SO ₃	0.15	k ₁ 50, 70 (13.4) ^b Φ _b 89 (0.53) i	k_1 52 (6.3) Φ_{k} 91 (0.57) j	$i 81 (0.59) \Phi_{s} 11 (3.7) k_{1}$	
1a	LiCF ₃ SO ₃	0.18	k ₁ 51, 69 (13.3) ^b Φ _b 88 (0.51) i	$k_1 53 (5.5) \Phi_1 92 (0.53) i$	i 81 (0.53) Φ_{s} 13 (3.4) k ₁	
1a	LiCF ₃ SO ₃	0.21	k_1 50, 64 (13.2) ^b Φ_{h} 96 (0.36) i	\mathbf{k}_{1} 55 (6.3) $\mathbf{\Phi}_{1}$ 96 (0.44) i	$i 84 (0.38) \Phi_{1} 21 (5.6) k_{1}$	
1a	LiCF ₃ SO ₃	0.24	$k_1 49, 65 (12.8)^b \Phi_b 97 (0.38) i$	$k_1 54 (5.5) \Phi_{\rm b} 94 (0.44) i$	i 86 (0.43) $\Phi_{\rm b}$ 19 (4.3) k	
1a	LiCF ₃ SO ₃	0.27	k_1 50, 63 (12.7) ^b Φ_b 98 (0.49) i	k, 54, 64 (5.4) b D, 97 (0.40) i	$i 88 (0.45) \Phi_{1} 21 (4.1) k_{1}$	
1a	LiCF ₃ SO ₃	0.30	k ₁ 49, 63 (13.3) ^b Φ _b 99 (0.41) i	k_1 53, 66 (5.23) ^b Φ_{1} 98 (0.51) i	$i 89 (0.41) \Phi_{1} 21 (4.0) k_{1}$	
1b	LiCF ₃ SO ₃	0.00	k, 66 (8.3) Φ, 73 (0.49) i	k, 66 (8.3) Φ, 73 (0.45) i	$i 65 (0.74) \Phi_{1} 35 (9.5) k_{1}$	
1b	LiCF ₃ SO ₃	0.08	k ₁ 66 (11.7) Φ, 79 (0.65) i	$k_1 64 (9.6) \Phi_1 79 (0.65) i$	$i 71 (0.57) \Phi_{1} 33 (9.8) k_{1}$	
1b	LiCF ₃ SO ₃	0.16	$k_1 66 (11.5) \Phi_k 82 (0.57) i$	k_1 61 (9.5) Φ_{k} 83 (0.54) i	$i 74 (0.50) \Phi_{1} 33 (9.6) k_{1}$	
1b	LiCF ₃ SO ₃	0.24	k ₁ 64 (11.8) Φ ₁ 84 (0.47) i	k_1 57 (10.2) Φ_1 85 (0.61) i	$i 76 (0.49) \Phi$, 33 (9.5) k.	
1b	LiCF ₃ SO ₃	0.32	$k_1 62 (11.0) \Phi_1 85 (0.45) i$	k_1 55 (9.1) Φ_1 86 (0.55) i	$i 79 (0 49) \Phi$, 33 (9 2) k.	
1b	LiCF ₃ SO ₃	0.40	$k_1 62 (11.1) \Phi_1 86 (0.49) i$	\mathbf{k}_1 55 (9.8) $\mathbf{\Phi}_1$ 89 (0.40) i	$i 78 (0 30) \Phi$, 33 (9 2) k.	
1c	LiCF	0.00	k_1 56 (18.9) Φ_1 63 (0.80) i	k_{1} 56 (13.3) Φ_{1} 61 (0.75) i	$i 54 (0.72) \Phi_{1} 34 (14.7) k$	
1c	LiCF ₃ SO ₃	0.10	k_1 58 (13.6) Φ_s 73 (0.72) i	k_1 53 (13.3) Φ_1 64 (0.68) i	$i 55 (0.46) \Phi_{1} 27 (12.2) k_{1}$	
1c	LiCF ₂ SO ₂	0.20	k_1 56 (13.4) Φ_1 84 (0.51) i	k_{1} 56 (14 1) Φ_{1} 83 (0 57) i	$i 76 (0.54) \Phi_{1} 32 (13.7) k_{1}$	
1c	LiCF ₂ SO ₂	0.30	k_1 54 (13.6) Φ_1 90 (0.52) i	k_{1} 54 (13 8) Φ_{1} 89 (0 50) i	$i 82 (0.47) \Phi_{1} 30 (13.1) k_{1}$	
1c	LiCF ₂ SO ₂	0.40	$k_1 43, 54 (16.9)^{b} \Phi, 99 (0.48) i$	$k_1 54 (13.4) \Phi_1 97 (0.40) i$	$i 89 (0 43) \Phi_{1} 28 (13 3) k_{1}$	
1c	LiCF ₂ SO ₂	0.50	k_1 52 (13.8) Φ , 105 (0.47) i	$k_1 52 (12.9) \Phi_1 103 (0.38) i$	$i 97 (0 29) \Phi$, $30 (12 5) k_1$	
1c	LiCE	0.60	k_1 51 (12.9) Φ_1 111 (0.26) i	$k_1 52 (12.4) \Phi_1 108 (0.33) i$	$i 102(0.25) \oplus 30(11.9) k_1$	
10	LiCE.SO.	0.70	$k_1 52 (12.5) \Phi_1 115 (0.11)$	$k_1 52 (12.1) \oplus 100 (0.55) $	$i 106(0.22) \oplus_{h} 20(11.3) k_{1}$	
10	LiCE SO.	0.80	$k_1 52 (12.3) \oplus_k 113 (0.11) 1$ k. 53 (12.2) $\oplus_k 123 (0.24) i$	$k_1 52 (12.1) \Phi_h 115 (0.27) i$	$i 109 (0.22) \Phi_h 23 (11.3) \kappa_1$	
1c	LiCF ₃ SO ₃	0.90	$k_1 55 (12.2) \Phi_h 125 (0.22) i$ $k_1 52 (11.9) \Phi_h 128 (0.22) i$	$k_1 35 (11.1) \Phi_h 117 (0.27) T$ $k_2 16 (0.18) k_1 50 (9.1) \Phi_h$ 115 (0.24) j	i 110 (0.26) Φ_h 25 (7.8) k_1	
1c	LiCF ₃ SO ₃	1.00	k ₁ 52 (12.2) Φ _h 134 (0.24) i	k_2 14 (0.34) c 26 (-0.64) k_1 47 (6 4) ϕ . 106 (0 14) j	i 97 (0.12) Φ_{h} 21 (5.1) k_{1}	
1c	LiCF ₃ SO ₃	1.20	k ₁ 51 (11.6) Φ _h 138 (0.09) i	$k_2 13 (1.5) c 27 (-1.4) k_1$ 46 (2.7) $\Phi_{\rm b}$ 74 (0.10) i	$i 62 (0.06) \Phi_h 13.0 (1.3)^d k_1$	
1c	NaCF ₂ SO ₂	0.10	k, 52 (15.1) Φ, 75 (0.72) i	k, 53 (14.4) Φ, 75 (0.69) i	i 69 (0.70) Φ _b 32 (14.0) k ₁	
1c	NaCF ₂ SO ₂	0.20	k, 51(13.8) Φ, 85 (0.65) i	k, 51 (13.6) Φ , 85 (0.54) i	i 79 (0.54) Φ, 29 (13.4) k	
1c	NaCF ₃ SO ₃	0.30	k, 51 (13.9) Φ, 93 (0.43) i	k_1 51 (13.4) Φ_5 92 (0.49) i	i 86 0.53) $\Phi_{\rm s}$ 28 (12.6) k.	
1c	NaCF ₂ SO ₂	0.40	k_1 51 (13.6) Φ_1 98 (0.67) i	k_1 49 (12.4) Φ_1 98 (0.44) i	$i 91 (0.44) \Phi_{1} 25 (11.2) k_{1}$	
1c	NaCE-SO	0.50	k_{1} 50 (13.6) Φ_{1} 103 (0.38) i	k_1 49 (12.2) Φ_1 103 (0.35) i	$i 97 (0.39) \Phi_{1} 25 (11.2) k_{2}$	
lc	NaCF ₃ SO ₃	0.60	$k_2 30 (3.9) k_1 50 (12.6) \Phi_h$ 112 (0.25) j	$k_1 50 (12.4) \Phi_h 111 (0.33) i$	$i 104 (0.32) \Phi_{h} 25 (11.1) k_{1}$	
1c	NaCF ₃ SO ₂	0.70	k, 51 (11.8) Φ, 113 (0.18) i	k, 49 (11.4) Φ, 115 (0.27) i	i110 (0.26) Φ _k 25 (11.1) k.	
1c	NaCF-SO-	0.80	$k_1 49 (11.4) \Phi_1 116^{\circ} i$	k ₁ 50 (13.7) Φ, 118 (0.34) i	i 111 (0.28) Φ. 24 (8.6) k.	
1c	NaCF-SO-	0.90	$k_1 49 (11.2) \Phi_1 122 (0.20) i$	k_1 51 (10.8) Φ_1 131 (0.08) i	$i 123 (0.09) \Phi_{1} 25 (7.1) k.$	
lc	NaCF ₃ SO ₃	1.00	$k_1 49 (10.9) \Phi_h 126 (0.09) i$	$k_2 27 (0.88) k_1 50 (10.0) \Phi_h$ 123 (0.14) i	$i 116 (0.20) \Phi_{h} 25 (7.1) k_{1}$	
1c	NaCF ₃ SO ₃	1.10	k ₁ 50 (10.5) Φ _h 122 (0.07) i	$k_2 25 (2.6) k_1 (13.2) \Phi_h$ 115 (0.17) i	i 109 (0.19) Φ _h 14 (7.1) k ₁	

Fig. 2 A tilted side view of the schematic representation of the mono-substituted alcohols 1 and the methacrylate monomers based on them being polymerized covalently or via H-bonding to a self-assembled cylindrically shaped supramolecule in the Φ_h phase and the complexation of triffate salts by the oxyethylene segments in the inner core of the assembly

dependent on the stabilization of this assembly by *endo*recognition in the core of the cylinder (H-bonding and ionic interactions) and *exo*-recognition that occurs between the tapered groups and also between the cylinders (*i.e.*, the hexagonal arrangement of the columns). In this paper we discuss the changes in the phase behaviour occurring upon complexation of 1 and 2 with $LiCF_3SO_3$ and $NaCF_3SO_3$. The ability to regulate the phase behaviour of sidechain liquid crystals containing various *endo*-receptors *via* molecular recognition of metal salts has previously been

Table 1	. (continued)	

Compd.	Salt added to 1 or 2		Thermal transition (°C) and corresponding enthalpy changes (in parentheses, kcal mol^{-1}) ^a			
	Туре	Moles	1st heating scan	2nd heating scan	1st cooling scan	
1c	NaCF ₃ SO ₃	1.20	k ₁ 50 (13.6) Φ _h 123 (0.06) i	\mathbf{k}_2 31 (0.98) \mathbf{k}_1 49 (9.1) $\mathbf{\Phi}_{\mathbf{h}}$ 121 (0.20) i	i 116 (0.26) Φ _h 23 (7.2) k ₁	
1d	LiCE ₂ SO ₂	0.00	k, 50 (16.4) Φ, 59 (0.74) i	k ₁ 49 (15.5) Φ _b 57 (0.88) i	i 52 (0.78) Φ _h 31 (15.1) k ₁	
14	LiCE,SO,	0 10	k, 49 (15.0) Φ, 69 (0.76) i	k, 48 (15.5) Φ , 69 (0.68) i	i 64 (0.69) Φ _h 30 (15.0) k ₁	
1d	LICE	0.20	$k_1 48 (14.9) \Phi_1 76 (0.74) i$	k, 47 (15.0) Φ, 74 (0.46) i	i 69 (0.64) Φ _h 29 (14.6) k ₁	
1d	LiCE	0.30	k, 48 (15.4) Φ, 82 (0.58) i	k, 47 (14.6) Φ , 81 (0.52) i	i 76 (0.52) Φ _h 28 (14.2) k ₁	
14	LICE, SO.	0.40	k_{1} 46 (15 0) Φ_{1} 89 (0.41) i	k, 49 (14.1) Φ , 88 (0.46) i	i 83 (0.40) Φ, 26 (13.5) k ₁	
14	LICE SO.	0.50	k_1 45 (15.0) Φ_1 94 (0.27) i	k, 49 (13.8) Φ , 94 (0.38) i	i 88 (0.38 Φ, 25 (13.3) k	
14	LICE SO	0.50	$k_1 47 (14.6) \Phi_1 100 (0.39) i$	k, 47 (13.6) Φ, 100 (0.28) i	$i 95(0.36) \Phi_{1} 25(11.4) k_{1}$	
14	LICE SO	0.00	$k_1 47 (14.3) \oplus 103 (0.31) i$	\mathbf{k}_{1} 47 (13 2) $\mathbf{\Phi}_{1}$ 103 (0.24) i	i 97 (0.31) Φ, 26 (11.9) k	
14	LICE SO	0.70	$k_1 = 47 (14.5) \oplus_{k} 105 (0.51) 1$ k. 46 (14.6) $\oplus_{k} 108 (0.36) i$	$k_1 47 (13.0) \Phi_1 107 (0.29) i$	i 101 (0.31) 4 , 25 (12.6) k	
14	LICE SO	0.00	$k_1 = 0$ (14.0) $\Phi_h = 100$ (0.30) 1 k = 51 (15.1) $\Phi_h = 111$ (0.13) j	$k_1 47 (12.7) \Phi_1 107 (0.25) I$	$i 104 (0.22) \Phi_{1} 25 (12.2) k$	
14	LICE SO	1.00	$k_1 31 (13.1) \oplus 111 (0.13) 1$ $k_1 47 (14.2) \oplus 116 (0.26) i$	k_1 47 (12.3) Φ_h 103 (0.21) i	$i 108 (0.22) \Phi_{1} 25 (12.0) k$	
1u 1d	LICE SO	1.00	$k_1 = 47 (13.8) \oplus 118 (0.15) i$	$k_1 47 (12.3) \oplus_h 113 (0.19) i$	$i 108 (0.22) \Phi_{\rm h} 25 (11.3) k$	
1u 1d	LICE SO	1.10	$k_1 \neq 7 (13.8) \oplus k_1 18 (0.13) 1$ $k_1 \neq 6 (11.0) \oplus 123 (0.07) i$	$k_1 47 (94) \oplus 115 (0.05) i$	$i 108 (0.07) \Phi_{\rm h} 23 (113) {\rm k}$	
14	NaCE SO	0.10	$k_1 = 0 (11.0) \Phi_h (12.0 (0.07))$	$k_1 = (0.4) \oplus (1.5) \oplus (0.00)$	$i 59 (0.74) \oplus 31 (15.3) k$	
10	NaCF 303	0.10	$\mathbf{k}_1 = \mathbf{k}_1 = \mathbf$	$k_1 = 50 (15.0) \Phi_h = 55 (0.74) I$ $k_1 = 40 (14.8) \Phi_h = 72 (0.52) i$	$i 66 (0.65) \oplus 29 (14.3) k_1$	
10	NaCE SO	0.20	$K_1 49 (15.1) \Phi_h 72 (0.01) 1$	$k_1 \neq 3$ (14.8) $\Phi_h = 72$ (0.32) 1 $k_1 = 40$ (14.3) $\Phi_1 = 78$ (0.40) j	$i 72 (0 53) \oplus 29 (13 7) k$	
14	NaCE SO	0.30	$K_1 49 (15.1) \Psi_h / 0 (0.51) 1$	$k_1 = (14.3) \oplus (13.0) \oplus (0.43) = 1$	$i R^2 (0.38) \oplus i 26 (12.9) k_1$	
10	NaCF 3503	0.40	K_1 46, 50 (14.7) Ψ_h 66 (0.45) 1 k_h 48 (45.2) Φ_h 80 (0.37) ;	$k_1 = 47, 51 (13.0) \Phi_h = 88 (0.32)$	$i 83 (0 34) \oplus 26 (12.5) k_1$	
10	NaCF 3503	0.30	$K_1 40 (43.2) \Psi_h 09 (0.37) I$	$k_1 = 40, 51 (15.0) = \Phi_h = 60 (0.52) = 1$	$i 01 (0.25) \oplus 24 (11.8) k$	
10	NaCF ₃ SO ₃	0.60	$K_1 49 (13.0) \Psi_h 90 (0.29) 1$	$K_1 47, 52 (12.6) \Psi_h 56 (0.24) I$	$(0.25) \Phi_h 24 (11.0) \kappa_1$	
10	NaCF ₃ SO ₃	0.70	$K_1 40 (20.1) \Psi_h 103 (0.24) 1$	$K_1 40 (12.2) \Psi_h 103 (0.20) I$	$(0.20) \Psi_{h}^{23} (11.3) K_{1}^{1}$	
10	NaCF ₃ SO ₃	0.80	$K_1 47, 53 (13.1)^2 \Psi_h 103 (0.20)^1$	$K_1 40 (11.4) \Psi_h 103 (0.23) 1$	$1 97 (0.23) \Psi_h 22 (10.1) K_1$ $1 102 (0.10) \Phi 23 (0.0) k$	
Id	NaCF ₃ SO ₃	0.90	$K_1 4/(12.9) \Psi_h 10/(0.22) 1$	$K_1 4/(11.1) \Psi_h 10/(0.11) 1$	$1102(0.10) \Psi_h 23(9.9) K_1$ $108(0.20) \Phi_h 17(5.8) k_1$	
10	NaCF ₃ SO ₃	1.00	$k_1 46, 53 (12.6)^{\circ} \Psi_h$ 113 (0.16) i	\mathbf{k}_2 12 (0.25) c 25 (-1.1) \mathbf{k}_1 46 (9.3) $\boldsymbol{\Phi}_{\mathbf{h}}$ 112 (0.17) i	$1100(0.20)\Psi_{\rm h}17(5.0){\rm k}_{1}$	
1 d	NaCF ₃ SO ₃	1.10	k ₁ 52 (12.0) Φ _h 116 (0.10) i	k_2 12 (0.27) c 26 (-0.82) k_1 46 (8 2) Φ , 115 (0.07) j	i 113 (0.17) Φ _h 17 (5.0) k ₁	
1 d	NaCF ₃ SO ₃	1.20	k ₁ 52 (11.5) Φ _h 110 (0.06) i	k_2 12 (0.55) c 24 (-1.1) k_1 45 (7.2) Φ_k 110 (0.08) i	i 107 (0.05) Φ _h 15 (4.2) k ₁	
29	LiCE-SO	0.00	Φ. 127 (0.30) i	Φ, 127 (0.30) i	i 110 (0.38) Φ _b	
28	LiCE	0.104	$\Phi_{\rm v}$ 110 (0.13) i	- h · (· · · ·) -		
28	LiCE	0.20 ^d	$\Phi_{\rm v}$ 104 (0.05) i			
2h	LiCE ₃ SO ₃	0.00	g 36 Φ, 116 (0.38) i	g 37 Φ , 116 (0.30) i	i 103 (0.38) Φ _b 29 g	
2h	LiCF ₂ SO ₂	0.104	$\Phi_{\rm v}$ 105 (0.24) i	——————————————————————————————————————		
2h	LiCF ₂ SO ₂	0.20 ^d	$\Phi_{\rm v}$ 104 (0.08) i			
2h	LICE-SO	0.304	Φ , 101 (0.04) i		_	
20	LICE.SO.	0.00	k_{1} 48 (3 32) ϕ . 113 (0 43) i	Φ. 112 (0.43) j	i 103 (0.45) Φ,	
20	LICE SO	0.00	$\Phi_{116}(0.57)$ i	$\Phi_{115}(0.50)$ i	i 105 (0.47) Φ	
20	LICESO	0.20	$\Phi_{\rm h}$ 123 (0.39) i	$\Phi_{\rm c}$ 122 (0.32) i	i 111 (0.35) Φ.	
20	LICE SO	0.20	$k_{\rm h}$ 125 (0.57) $h_{\rm h}$ 117 (0.21) j	$\Phi_{\rm h}$ 122 (0.22) i	i 116 (0 28) Φ.	
20	LICE SO	0.30	$k_1 = 52 (0.27) \oplus_{h} 117 (0.21) 1$ $k_2 = 48 (0.29) \oplus_{h} 122 (0.19) i$	$\Phi_{\rm h}$ 129 (0.14) i	i 118 (0 22) D .	
20	LICE SO	0.40	$k_1 = 48 (0.22) \oplus k_1 = 122 (0.17) i$	$\Phi_{\rm h}$ 126 (0.05) i	$i 113 (0.09) \Phi_{\rm h}$	
24	LICE SO	0.00	$k_1 = 5 (0.50) \Phi_h = 103 (0.50) i$	$\Phi_{\rm h}$ 120 (0.03) 1 $\Phi_{\rm h}$ 99 (0.43) i	i 87 (0 69) Φ.	
2d	LICE SO	0.00	$k_1 = (3, 13) = k_1 = (3, 10) (0.30)$	$\Phi_h = 101 (0.47) i$	i 88 (0 43) D .	
2d	LICE SO	0.10	$\mathbf{m}_1 \rightarrow (0.00) \mathbf{w}_1 \rightarrow (0.00) 1$	$\Phi_{\rm h}$ 106 (0.35) i	i 92 (0 30) Φ	
24	LICE SO	0.20	$\Phi_{117}(0.73)$	Φ_{h} 100 (0.33) i	i 97 (0 25) M	
24	LICE SO	0.30	Φ_{h} 117 (0.22) 1 Φ_{h} 121 (0.15) ;	Φ_{h} 110 (0.27) 1 Φ_{h} 114 (0.19) ;	$i 97 (0.23) \Psi_{h}$	
24	LICE SO	0.40	Ψ_h 121 (0.13) 1 Φ 112 (0.07) ;	Ψ_h 114 (0.17) 1 Φ 112 (0.12) ;	i 93 (0.16) Φ	
2d	LiCF ₃ SO ₃	0.60	$\Phi_{\rm h}$ 112 (0.07) i	$\Phi_{\rm h}$ 112 (0.12) 1 $\Phi_{\rm h}$ 112 (0.08) i	$i 93 (0.13) \Phi_{h}$	

^a The molecular weight is weight averaged with the amount of NaCF₃SO₃ or LiCF₃SO₃ present. ^b Combined enthalpies for overlapped transitions are presented. ^c The transition was undetectable by DSC and the temperature was assigned by thermal optical polarized microscopy at 20 °C/min. ^d Second heating and first cooling transitions could not be determined owing to sample decomposition.

reported from our laboratory.⁶ The changes in the phase behaviour of the complexes of 1 and 2 with LiCF_3SO_3 and NaCF_3SO_3 as a function of the number of oxyethylene units in the spacer and the difference that results when this assembly is formed by a 'molecular' polymer backbone (covalent) or a 'supramolecular' polymer backbone (H-bonding) are discussed. Also, two sets of examples comparing the difference in the effectiveness of the Li and Na cations in providing the stabilization of the supramolecular assembly are presented.

Experimental

The details of the synthesis and characterization of compounds 1a-d and 2a-d (shown in Fig. 1) as well as the preparation of

their complexes with LiCF_3SO_3 and NaCF_3SO_3 were reported previously.⁴ Molecular modelling was done using CSC Chem3D PlusTM from Cambridge Scientific Computing, Inc.

Results and Discussion

Fig. 1 shows the structures of compounds 1 and 2. The phase behaviour of the LiCF₃SO₃ and NaCF₃SO₃ complexes of compounds 1 and 2 was investigated by differential scanning calorimetry (DSC). Representative DSC traces of these complexes have been previously reported and will not be presented here.⁴ The results of the DSC analysis of the pure compounds and of their complexes are summarized in Table 1. Representative textures of the Φ_h mesophase of the compounds 1 and 2 as observed under crossed polarizers are shown in Fig. 3. Fig. 3(a)-(c) show the focal conic and fan-shaped focal conic textures of 1a, 1d and 2c, respectively, in the absence of any complexed salt. Fig. 3(d) shows a texture of 2c with 0.4 mol of added LiCF₃SO₃. In all cases the polymers 2 form textures more slowly upon cooling from the isotropic melt into the Φ_h mesophase with smaller domains than the textures formed by their low molecular weight analogues 1.

The dependence of the phase behaviour of complexes of 1 and 2 on the amount of salt is shown in Figs. 4-6. Fig. 4 presents the dependence for compounds 1a-d with increasing amounts of LiCF₃SO₃. All compounds increase their Φ_{h} -isotropic transition temperature ($T_{\Phi h-i}$) on their first DSC heating scan. A small decrease in the crystalline- Φ_h transition temperature $(T_{k-\Phi h})$ with the increase in the amount of complexed LiCF₃SO₃ is also observed. In the first cooling and second heating scans two differences can be seen as compared with the first heating scan. The first difference is that the $T_{k-\Phi h}$ of 1a with only one oxyethylene segment is more kinetically controlled and occurs at lower temperatures than the corresponding transition of 1b, c and d. Also, the $T_{k-\Phi h}$ transition temperature reaches a minimum at 0.18 mol of added $LiCF_3SO_3$. This behaviour is less noticeable for 1b, c and d. The second difference is that the $T_{\Phi h-i}$ of 1c and d shows different behaviour during the first cooling and second heating scans than in the first heating scan when greater than 0.8 mol of LiCF₃SO₃ are added. Previously we have found evidence of decomposition of 1 and 2 at elevated temperatures in the presence of LiCF₃SO₃.⁴ Lewis-acid-catalysed cleavage of the phenyl benzyl ether groups by the LiCF₃SO₃ was suggested to be the cause of this degradation.⁷

As the number of oxyethylene segments in the molecule of 1 and 2 increases, the $T_{\Phi h-i}$ transition temperature decreases. With sequential addition of $LiCF_3SO_3$, 1c and d have their $T_{\Phi h-i}$ systematically increased in the first heating scan at an approximately constant slope up to a concentration of 1.2 mol of LiCF₃SO₃ per mole of 1c or d. Above this concentration which leads to $T_{\Phi h-i}$ values of 120 °C, decomposition of the complexes begins to occur. 1a and b have smaller slopes than 1c and d and are not able to complex as much $LiCF_3SO_3$ as 1c and d. 1a complexes only 0.3 mol of LiCF₃SO₃ in the Φ_h mesophase and 1b complexes 0.4 mol of LiCF₃SO₃. Above these concentrations the $T_{\Phi h-i}$ is overlapped by a crystalline melting transition on the first heating scan which does not reform on the cooling scan but which is present also on the second heating scan. We do not fully understand this behaviour. DSC analysis indicates that a crystalline phase which has a higher $T_{k-\Phi h}$ than the pure 1a or b may be induced by the high concentrations of LiCF₃SO₃. Optical polarized microscopy does not show any evidence of undissolved LiCF₃SO₃. Possibly this phase results from the formation of aggregates of LiCF₃SO₃ molecules within the assembled structure. Careful analysis by X-ray scattering experiments would be necessary to determine the nature of this phase or to elucidate whether a mixture of Φ_h and crystalline phases are present.

In contrast with 1a and b, 1c and d complex LiCF₃SO₃ in the Φ_h mesophase up to a concentration of 1.2 mol of salt per mole of 1. Above this concentration which corresponds to $T_{\Phi h-i}$ of > 120 °C the molecules begin to decompose quite rapidly during the DSC experiments. As a result of this behaviour we could not determine the maximum amount of salt that could be complexed by 1c and 1d.

Fig. 5(a)-(c) show the phase behaviour of the polymers 2 versus the amount of complexed LiCF₃SO₃. 2a and 2b exhibit a $T_{\Phi h-i}$ on the first heating scan which is not detectable by DSC on the first cooling or second heating scans. The temperature of this transition decreases with the increasing amount of LiCF₃SO₃. The decrease in $T_{\Phi h-i}$ with the increasing amount of

 $LiCF_3SO_3$ is the opposite of the behaviour exhibited by 1a-d. Both the decrease in $T_{\Phi h-i}$ with the increase in the amount of LiCF₃SO₃ and the absence of transition peaks on subsequent DSC scans probably result from the Lewis-acid-catalysed decomposition of the side-chain groups. 2c and d exhibit the expected systematic increase in $T_{\Phi h-i}$ with sequential addition of LiCF₃SO₃ up to 0.4 mol of salt, and exhibit a Φ_h mesophase up to concentrations of 0.5 and 0.6 mol, respectively, per mole repeat of 2. Above these concentrations 2c and d do not display first-order phase transitions for the Φ_h -isotropic phase transition on their DSC scans. Fig. 5(a)-(c) demonstrate that both 2c and d experience a decrease in their $T_{\Phi h-i}$ above concentrations of 0.4 mol of LiCF₃SO₃. This may result from some decomposition of the tapered polymer side groups, although the first-order transitions are detectable on subsequent DSC scans.

A comparison of the difference in the effectiveness of providing increased stabilization of the supramolecular organization for the Li cation with a radius of 0.68 Å⁸ as compared to the Na cation with a radius of 0.97 Å⁸ was made with **1c** and **d**. The experimental results are presented in Table 1 and plotted in Fig. 6(a)-(c). $T_{k-\Phi h}$ for both compounds gradually decreases with increasing salt concentration for both cations. However, $T_{\Phi h-i}$ systematically increases at the same rate for both cations providing almost identical Φ_h -isotropic phase transition temperatures for both sets of complexes. Irregular differences do become evident at high temperatures and salt concentrations where sample decomposition takes place (> 0.8 mol of added salt).

To help understand more clearly how the added salts provide increased stabilization to the $\Phi_{\rm h}$ mesophase, molecular modelling was performed on 1a, d and 2c as well as on their complexes with LiCF₃SO₃. The results are shown in Fig. 7. Fig. 7(a) shows the cross-section of the self-assembled cylinder of 1a. This arrangement has the polar oligooxyethylene segments in the centre of the arrangement and the non-polar alkyl tails at the column periphery. The alkyl tails are arbitrarily melted to achieve an average diameter of 44.8 Å which is consistent with X-ray scattering experiments of the Φ_h mesophase of 1a.⁴ The oxygen atoms of single oxyethylene segment of 1a are indicated as the speckled atoms. Placed in the centre of the oligooxyethylene segments is a Li cation which is represented by the solid filled atom. With the high concentration of donor oxygen atoms (present as -OH groups) available in the centre of the assembly, this is the most probable site for complexation of the Li cation in the Φ_h mesophase.^{9,10}

In comparison with 1a, a model for the assembly of 1d is shown in Fig. 7(b). 1d Has four oxyethylene segments with four donor oxygen atoms per molecule available for coordination with the Li cations. The alkyl tails have been melted to an average diameter of 53.2 Å which is the diameter of the column formed by the uncomplexed 1d. The oxyethylene segments are melted to fill the space of the core area efficiently. The arrangement shown in Fig. 7(b) is a two-dimensional (2-D) representation of 1d in the Φ_h mesophase that is consistent with the experimental data obtained so far. This 2-D arrangement results in many high-energy conformations and unfavourable steric interactions. It is expected that the oxyethylene segments as well as the alkyl tails are rotated out of the plane of the crosssection along the column axis to avoid these conformations.

In the core of the column of 1d there is a very high concentration of electron-rich donor oxygen atoms of the oxyethylene segments. Li cations are positioned within the Van der Waals radii of a minimum of two available oxygen atoms.¹¹ There are six Li cations present in the model which represents the highest concentration of LiCF_3SO_3 that was measured. It is expected that the oligooxyethylene segment will change its conformation so that the space is filled effectively and provides

Fig. 3 Representative optical polarized micrographs of the texture exhibited by the hexagonal columnar (Φ_h) mesophase of: (a) 1a upon cooling from 85 °C to 81 °C (1 °C min⁻¹); (b) 1d upon cooling from 60 °C to 56 °C (1 °C min⁻¹); (c) 2c upon cooling from 110 °C to 102 °C (1 °C min⁻¹) and annealing for 12 h; (d) 2c with 0.4 mol of added LiCF₃SO₃ upon cooling from 125 °C to 110 °C (1 °C min⁻¹) and annealing for 12 h

Fig. 4 The dependence of the k- Φ_h (T_m , filled symbols) and Φ_h -i (T_i , open symbols) phase-transition temperatures of the complexes of 1a $(+, \times)$, 1b (\Box , \blacksquare), 1c (\triangle , \blacktriangle) and 1d (\bigcirc , \oplus) with various amounts of LiCF₃SO₃ (Table 1) obtained from: (a) the first DSC heating scans; (b) the first DSC cooling scans; (c) the second DSC heating scans

the necessary coordination of the LiCF₃O₃ present. This interaction with the added salts provides the increased stabilization of the Φ_h mesophase up to higher temperatures (Table 1, Fig. 4).

The stabilization of the mesophase *via* complexation is probably the result of several factors. Speculation on two of the

Fig. 5 The dependence of the $k-\Phi_h(T_m, \text{ filled symbols})$ and $\Phi_h-i(T_i, \text{ open symbols})$ phase-transition temperatures of the complexes of **2a** $(\times, +), 2b(\Box, \blacksquare), 2c(\Delta, \blacktriangle), \text{ and } 2d(\bigcirc, \bullet)$ with various amounts of LiCF₃SO₃ (Table 1) obtained from: (a) the first DSC heating scans; (b) the first DSC cooling scans; (c) the second DSC heating scans

factors is possible based on these results. The increased ionic interactions that occur through the cooperative complexation of the added salts by the molecules of 1 in this cylindrically shaped assembly would provide enhanced rigidity of the oligooxyethylene column core. This would result in a decrease in the conformational entropy of the oligooxyethylene segments

Fig. 6 The dependence of the k- $\Phi_h(T_m, \text{closed symbols})$ and $\Phi_h-i(T_i, \text{open symbols})$ phase-transition temperatures of the complexes of 1c with various amounts of LiCF₃SO₃ (\triangle , \blacktriangle) and NaCF₃SO₃ (\Box , \blacksquare) and of 1d with various amounts of LiCF₃SO₃ (\bigcirc , \bigcirc) and NaCF₃SO₃ (\Box , \blacksquare) and of 1d with various amounts of LiCF₃SO₃ (\bigcirc , \bigcirc) and NaCF₃SO₃ (\Box , \blacksquare) first DSC heating scans; (b) the first DSC cooling scans; (c) the second DSC heating scans

in the inner core of the column upon coordination with Li cations. This complexation provides a thermodynamic driving force to maintain this assembly at higher temperatures. The second factor is that the solvated salts convert the core of the cylinder from a polar region (resulting from the dipoles of oxyethylene segments)¹² into an ionic region with the dissolved salts. This provides an increase in the polarity of the cylinder core and may cause an enhancement of the hydrophobic interactions present in the assembly which stabilize it *via* microsegregation. Additional experiments which support these assumptions are in progress.

Fig. 7(c) shows a model of 2c with the alkyl tails melted so that the column diameter matches the diameter determined by X-ray scattering experiments. This arrangement is based on the assumption that only a single polymer chain is present in the centre of the cylinder and that the cylinder formation must occur with cooperative conformational changes in the backbone conformation to allow the required positioning of the side groups to form the cylindrically shaped assembly. There is not yet any evidence to support or disprove this assumption. Li cations are positioned within the Van der Waals radii of a minimum of two available donor oxygens of the oxyethylene segments. As compared with the model of 1d [Fig. 7(b)], the oxyethylene segments of 2c are attached at one end to the polymer backbone and at the other end to the bulky taper shaped groups. The conformations available to oxyethylene segments are reduced as a result of the steric interactions of the tapered groups and the linear nature of the polymer backbone. Within a cross-section of the assembly, cooperative complexation of Li cations by the oxyethylene segments of adjacent side groups appears less likely to occur as a result of steric interactions. Complexation of the cation possibly occurs to a greater extent between the oxyethylene segments of repeat units which are stacked on top of each other along the column axis.

The positional restrictions imposed by the covalent attachment to the polymer backbone limit the amount of added LiCF₃SO₃ that can be complexed as well as the magnitude of the increase in $T_{\Phi h-i}$ per increase of added LiCF₃SO₃. For example, 1c with 0.4 mol of added LiCF₃SO₃ has a $T_{\Phi h-i}$ which is 36 °C higher than the pure uncomplexed 1c. Comparatively, 2d has only an 18 °C increase in $T_{\Phi h-i}$ with the addition of the same amount of LiCF₃SO₃ (1c and 2d are compared since they both have three donor oxygen atoms in the oxyethylene spacer available for complexation). The oxyethylene segments and the tapered side groups, most likely as a result of steric interactions, appear not to have the mobility to adjust positions and conformations in order to take advantage of the increased ionic interactions in providing stabilization to the cylindrically shaped assembly. This observation is further illustrated by noting that compound 1c eventually has $T_{\Phi h-i}$ increased 11 °C higher than any of the polymers 2 at any of the concentrations measured (determined from the first DSC heating scans).

Conclusions

The low molecular weight compounds 1 are able to complex higher concentrations of LiCF₃SO₃ in their self-assembled cylindrically shaped architecture which displays a Φ_h mesophase with greater increases in $T_{\Phi h-i}$ per increase in salt concentration than the corresponding polymethacrylates 2 derived from them. Based upon molecular modelling, positional and conformational restrictions imposed by both the tapered side groups and the polymer backbone are suggested for the explanation of these results. For both 1 and 2, increasing the number of oxyethylene segments present in the flexible spacer shifts $T_{\Phi h-i}$ to lower temperatures and allows more LiCF₃SO₃ to be complexed in their cylindrically shaped assembly. A comparison of the difference in the effectiveness of the Li cation versus the Na cation in providing increased stabilization of the $\Phi_{\rm b}$ mesophase does not show, to within the experimental error, significant differences between the two cations.

Fig. 7 Schematic representation of a cross-section of the supramolecular cylinders of 1 and 2 in the Φ_h mesophase with Li cations (\bigcirc) complexed by the oxygen atoms of the oxyethylene segments and the alkyl tails melted to match the column radius determined by X-ray scattering experiments: (a) top view of the cylinder containing four molecules of 1a in a stratum; (b) top view of the cylinder containing five molecules of 1d in a stratum; (c) top view of a cylinder of 2c containing six repeat units in a stratum

Acknowledgements

Financial support from the National Science Foundation (DMR-92-06781) and the Office of Naval Research, and a NATO travelling grant are gratefully acknowledged.

References

 (a) J. M. Lehn, Angew. Chem., Int. Ed. Engl., 1988, 27, 89; (b) J. M. Lehn, Angew. Chem., Int. Ed. Engl., 1990, 29, 1304; (c) J. S. Lindsey, New J. Chem., 1991, 15, 153; (d) G. M. Whitesides, J. P. Matias and C. T. Seto, Science, 1991, 254, 1312; (e) eds. H. J. Schneider and H. Durr, Frontiers in Supramolecular Chemistry, Wiley, New York, 1992; (f) eds. V. Balzani and L. DeCola, Supramolecular Chemistry, Kluwer, Dordrecht, 1992; for a series of books on supramolecular chemistry see: (g) series ed. J. F. Stoddart, Monographs in Supramolecular Chemistry, Royal Society of Chemistry, Cambridge, 1991; (h) series ed. G. W. Gokel, Advances in Supramolecular Chemistry, vol. 1, 1991 and vol. 2, 1992, JAL Press, London; (i) ed. S. M. Roberts, Molecular Recognition: Chemical and Biochemical Problems, Part I, 1989 and Part II, 1992, Royal Society of Chemistry, Cambridge; (j) F. Vögtle, Supramolecular Chemistry, Wiley, New York, 1991.

- 2 (a) J. Rebek Jr., Angew. Chem., Int. Ed. Engl., 1990, 29, 245; (b) D. Philip and J. F. Stoddart, Synlett, 1991, 445.
- 3 V. Percec, G. Johansson, J. Heck, G. Ungar and S. V. Batty, J. Chem. Soc., Perkin Trans. 1, 1993, 1411.
- 4 V. Percec, J. Heck, D. Tomazos, F. Falkenberg, H. Blackwell and G. Ungar, J. Chem. Soc., Perkin Trans. 1, in the press.
- 5 (a) V. Percec, M. Lee, J. Heck, H. Blackwell, G. Ungar and A. Alvarez-Castillo, J. Mater. Chem., 1992, 2, 931; (b) V. Percec, J. Heck, M. Lee, G. Ungar and A. Alvarez-Castillo, J. Mater. Chem., 1992, 2, 1033.
- 6 V. Percec, G. Johansson and R. Rodenhouse, Macromolecules,

1992, **25**, 2563; (b) V. Percec and G. Johansson, J. Mater. Chem., 1993, **3**, 83; (c) V. Percec and D. Tomazos, J. Mater. Chem., 1993, **3**, 633; (d) V. Percec and D. Tomazos, J. Mater. Chem., 1993, **3**, 643.

- 7 (a) J. Collomb, P. Arland, A. Gandini and H. Cheradame, in *Collomb*, P. Arland, A. Gandini and H. Cheradame, in *Cationic Polymerization and Related Processes*, ed. E. J. Goethals, Academic Press, New York, 1984, p. 49 and references cited therein; (b) Y. Eckstein and P. Dreyfuss, *J. Inorg. Chem.*, 1981, 43, 23; (c) A. Loupy and B. Tchouber, *Salt Effects in Organic and Organometallic Chemistry*, VCH, Weinheim, 1992, p. 2; (d) R. M. Pagni, G. W. Kabalka, S. Bains, M. Plesco, J. Wilson and J. Bartmess, *J. Org. Chem.*, 1993, 58, 3130.
- 8 R.C. Weast, ed., CRC Handbook of Chemistry and Physics, 65th edn., CRC Press, Inc., 1984.
- 9 The results of NMR experiments of polyethylene oxide dimethyl ethers suggest that the Li cation is coordinated by not more than four oxygen atoms for solvent-separated ion pairs, see: (a) L. L. Chan and J. Smid, J. Am. Chem. Soc., 1967, 89, 4547; (b) J. Smid, Angew. Chem., Int. Ed. Engl., 1972, 11, 112.
- 10 NMR measurements and binding constants for polyethylene oxide derivatives support the conclusion that the terminal hydroxy group

of polyethylene glycols plays an important role in the complexation of metal cations, see: (a) S. Yanagida, K. Takahashi and M. Okara, *Bull. Chem. Soc. Jpn.*, 1978, **51**, 1294, 3111; (b) G. W. Gokel, D. M. Goli and R. A. Schultz, J. Org. Chem., 1983, **48**, 2837; (c) eds. F. Vögtle and E. Weber, Host-Guest Complex Macrocycles: Synthesis, Structures, Applications, Springer-Verlag, Berlin, 1985.

- 11 In the crystal structure of the complex of tetraethylene glycol dimethyl ether with CdCl₂, it was shown that an oxygen atom may function as a bridge between two metal cations and therefore provide complexation for more than one cation at a time, see: R. Iwamoto and H. Wakano, J. Am. Chem. Soc., 1976, **98**, 3764.
- 12 (a) T. Uchida, Y. Kurita, N. Koizumi and M. Kubo, J. Polym. Sci., 1956, 21, 313; (b) W. J. Svirbely and J. L. Lander, J. Am. Chem. Soc., 1945, 67, 2189; (b) C. P. Smyth and W. S. Walls, J. Am. Chem. Soc., 1931, 53, 2115.

Paper 3/03884J Received 6th July 1993 Accepted 26th July 1993